## PC Board-Use Counter

## Miniature Counter for PC Board Usage

■ LSI with built-in digital filter ensures excellent noise immunity

- Machine insertable
- Can be mounted on 28-pin IC socket
- Totalizing counter, time counter and tachometer available



## Ordering Information

## ■ TOTALIZING COUNTERS

| Operating mode | UP type |  |  |
| :--- | :--- | :--- | :---: |
| Display | LCD digital, $5.1 \mathrm{~mm}(0.2$ in) high |  |  |
| Reset system | External (electrical) reset, power-OFF reset |  |  |
| Number of digits | 7 | No-voltage (contact, solid-state) input |  |
| Count input | No-voltage (solid-state) input | 30 cps |  |
| Max. counting speed | 1 kcps |  |  |
| Mounting style | Mounts directly on PCB, or with 28-pin IC socket |  |  |
| Part number | H7EC-P | H7EC-LP |  |

## - TIME COUNTER

| Operating mode | UP type |
| :--- | :--- |
| Display | LCD digital, $5.1 \mathrm{~mm}(0.2$ in $)$ high |
| Reset system | External (electrical) reset, power-OFF reset |
| Number of digits | $7(0.0$ to 999999.9 h$)$ |
| Count input | No-voltage (contact, solid-state) input |
| Mounting style | Mounts directly on PCB, or with 28 -pin IC socket |
| Part number | H7ET-P |

## ■ DIGITAL TACHOMETERS

| Operating mode | UP type |  |  |
| :---: | :---: | :---: | :---: |
| Display | LCD digital, 5.1 mm (0.2 in) high |  |  |
| Reset system | Automatic (No external or manual reset) |  |  |
| Number of digits | 4 |  | 5 |
| Count input | No-voltage (solid-state) input | DC voltage input |  |
| Max. counting speed | 1 kcps |  | 10 kcps |
| Applicable encoder resolution | 1 pulse/rev |  | 60 pulses/rev |
| Max. revolutions displayed | 1,000 rps |  | 10,000 rpm |
| Mounting style | Mounts directly on PCB, or with 28-pin IC socket |  |  |
| Part number | H7ER-P | H7ER-VP | H7ER-V2P |

## ACCESSORIES

## Connecting socket

| Description | Part number |
| :--- | :--- |
| 28-pin (standard quality) | XR2A-2801-N |

## Specifications

RATINGS

| Supply voltage | 3 VDC |
| :---: | :---: |
| Operating voltage range | 90 to 110\% of supply voltage |
| Current consumption | Models H7EC-DP and H7ER-P: $20 \mu \mathrm{~A}$ max. (at $3 \mathrm{VDC}, 25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$ ) Model H7ET-aPP: $15 \mu \mathrm{~A}$ max. (at $3 \mathrm{VDC}, 25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$ ) |
| Input* | DC Voltage input: <br> 4.5 to 30 VDC at "High" (logic) level <br> 0 to 2 VDC at "Low" (logic) level <br> (input impedance: approx. $4.7 \mathrm{k} \Omega$ ) <br> No-voltage input: <br> Maximum short-circuit impedance: $10 \mathrm{k} \Omega$ max. <br> Short-circuit residual voltage: 0.5 V max. <br> Minimum open impedance: $500 \mathrm{k} \Omega \mathrm{min}$. |
| Max. counting speed** | H7EC-P ( 1 kcps ): Minimum signal width 0.5 ms H7EC-LP ( 30 cps ): Minimum signal width 16.7 ms H7ER-P, -VP ( 1 kcps ): Minimum signal width 0.5 ms H7ER-V2P (10 kcps): Minimum signal width 0.05 ms |
| Reset time | External reset types: 20 ms <br> Power-OFF type reset time: 100 ms (with 0 V residual voltage at power OFF) |
| Gate time (H7ER only) | 1 second |

* The maximum voltages allowed on the input, count or gate terminals are as follows:

No-voltage models: 3 VDC
DC voltage models: 30 VDC
** ON/OFF ratio 1:1

## Approved by the following standards

UL
CSA
CE (EMC)

## CHARACTERISTICS

| Noise immunity | $\pm 200 \mathrm{~V}$ between input terminals with square-wave noise applied by noise simulator |
| :--- | :--- |
| Vibration | Mechanical durability: 10 to $55 \mathrm{~Hz} ; 0.75 \mathrm{~mm}(0.03 \mathrm{in})$ double amplitude <br> Malfunction durability: 10 to $55 \mathrm{~Hz} ; 0.3 \mathrm{~mm}(0.02 \mathrm{in})$ double amplitude |
| Shock | Mechanical durability: Approx. 30 G <br> Malfunction durability: Approx. 10 G |
| Ambient temperature | Operating: $-10^{\circ}$ to $55^{\circ} \mathrm{C}\left(14^{\circ}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$ <br> Storage: $-25^{\circ}$ to $65^{\circ} \mathrm{C}\left(-13^{\circ}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$ |
| Humidity | 35 to $85 \% \mathrm{RH}$ |
| Weight | Approx. $20 \mathrm{~g} \mathrm{(1.25} \mathrm{oz)}$ |

## Dimensions

$\qquad$

Unit: mm (inch)

0.3

Note: Mounting hole dimensions conform to the pin pitch of a standard 28 -pin IC socket.
*When machine inserting the H7ED-DP, the mounting holes must be 1.2 mm diameter.

## Connections

## H7EC-P, H7EC-PL, H7ET-P



## Power supply

All H7ED-DP models require a 3 VDC external power source. When designing a circuit, plan the power wiring connections to be within $50 \mathrm{~mm}(1.97 \mathrm{in})$. Refer to the connection diagrams above for proper wiring polarity.

The life expectancy of a battery power source can be calculated by the following formula:

$$
\mathrm{t}=1000 \mathrm{~A} / \mathrm{lc}
$$

where,
t : life expectancy of battery ( h )
A: battery capacity (mAh)
Ic: current consumed by H7ED-DP ( $\mu \mathrm{A}$ )

## Voltage division of power source circuit

When necessary, the voltage from the battery may be divided by resistances:


When doing so, however, ensure that the following equation balances:

$$
E(V) \times R_{2} /\left(R_{1}+R_{2}\right)=3 V
$$

Allow a current high enough to flow through $R_{1}$ so that the H7ED-DP receives adequate current.

C is a film capacitor, of about $0.1 \mu \mathrm{~F}$, and is intended to absorb noise superposed from the power lines.

Keep wiring between the H7ED-DP and $R_{2}$ as short as possible, within 50 mm (1.97 in)

## Backup circuit for protection against power failure



## ■ H7ER-P, H7ER-VP, H7ER-V2P



Use a diode (Di) having a forward voltage as small as possible ( 0.1 V max. at $I_{F}$ of 1 mA ). Determine the ratio of $R_{1}$ to $R_{2}$ in accordance with the forward voltage of the diode to be used. Be aware that when the supply voltage of power source E has dropped to less than the voltage of the backup circuit, the battery discharges. To protect the circuit against a momentary power failure, an aluminum electrolyte capacitor can also be used in place of a battery, as shown below:


When the capacitor is used, its backup time can be calculated by the following formula*:

$$
\mathrm{t}=\mathrm{C}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right) / / \mathrm{lc}
$$

where,

> t: Backup time (s)

C: Capacitance ( $\mu \mathrm{F}$ )
$\mathrm{V}_{1}$ : Supply voltage before power failure (V)
$\mathrm{V}_{2}$ : Minimum operating voltage of H7ED-DP $(\mathrm{V})$
Ic: H7ED-DP current consumption ( $\mu \mathrm{A}$ )
*In all applications which require the counter to maintain the accumulated display for a longer time, increase the capacitance to an appropriate value.

## Input connection Contact input

## SOLID-STATE INPUT OF OPEN-COLLECTOR TRANSISTOR

By open-collector transistor



By TTL or C-MOS IC


Use a transistor for input that satisfies the following conditions: Collector breakdown voltage $\geq$ (Circuit voltage) $\times 1.2$ Leakage current < $5 \mu \mathrm{~A}$
Amplification factor (hFE) $\geq 50$
Use diode (Di) having a forward voltage as small as possible ( 0.1 V max. at $\mathrm{I}_{\mathrm{F}}$ of $20 \mu \mathrm{~A}$ ).

## Operations

## PCB counter power source

Wiring polarity must be carefully observed in order to prevent permanent damage to the counter. The 28 -pin socket has no provision for preventing the insertion of the counter in a reversed position. Exercise caution when inserting the counter in the socket, to prevent reversed polarity

## Replacing battery

To prevent unwanted reset when replacing the battery, connect the new battery before disconnecting the old one. Otherwise, the voltage supplied to the counter circuit drops, causing the present count value to reset.

When designing the circuit board, providing two extra terminals for battery connection will make the switch much simpler. See the schematic diagram below:
ter


## Wiring

Do not route the count, gate or reset input wiring in the vicinity of, or in parallel to the wiring of high-voltage or inductive load circuits (such as motors and relays). Also, keep the wiring as short as possible.


## GENERAL INFORMATION

The terminals are solder-plated. Finish soldering the terminals within 5 seconds, at a solder iron tip temperature of $250^{\circ} \pm 10^{\circ} \mathrm{C}$ $\left(482^{\circ} F \pm 50^{\circ} \mathrm{F}\right)$. Since the counter is not flux-tight, do not use flux when soldering. Avoid automatic and dip soldering. Manually solder the counter onto a PC board, and avoid cleaning as much as possible.

When mounting the counter on a PC board with components which consume higher current than the counter, place the counter in the vicinity of the power supply. Avoid placing the counter in a circuit with power-consuming components. Above all, never place the count input circuit in a circuit common to power-consuming components.


